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Noise-induced Brownian motion of spiral waves
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We study the erratic displacement of spiral waves forced to move in a medium with random spatiotemporal
excitability. Analytical work and numerical simulations are performed in relation to a kinematic scheme,
assumed to describe the autowave dynamics for weakly excitable systems. Under such an approach, the
Brownian character of this motion is proved and the corresponding dispersion coefficient is evaluated. This
quantity shows a nontrivial dependence on the temporal and spatial correlation parameters of the external
fluctuations. In particular, a resonantlike behavior is neatly evidenced in terms of the noise correlation time for
the particular situation of spatially uniform fluctuations. Actually, this case turns out to be, to a large extent,
exactly solvable, whereas a pair of dispersion mechanisms are discussed qualitatively and quantitatively to
explain the results for the more general scenario of spatiotemporal disorder.
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[. INTRODUCTION spiral waves to structured noise. The particular system cho-
sen corresponds to the photosensitive BZ reaction under spa-
Spiral excitation waves are among the most paradigmatitotemporal fluctuations in the illumination. In the absence of
examples of spatiotemporal self-organizing structures irfandomness, the initial configuration was that of a steadily
nonequilibrium extended systemi$]. They have been ob- rotating spiral with no net translational motion. When the
served in very different systems, ranging from the prototypi-noise was switched on, Brownian wandering of the spiral tip
cal Belousov-Zhabotinsk§BZ) reaction[2] or catalytic sur- Was evidenced and characterized in terms of a diffusion co-
face processd8], to aggregating colonies of social amoebaeeéfficient, showing a nonmonotonic dependence on the pa-
and other microorganismp4] or propagating patterns of rameters of the noissee Fig. 13)]. In particular, perturbing
heart tissue excitations5]. Given the wide variety of sce- the spiral with fixed noise dispersion and varying its time
narios just mentioned, one could easily admit that spiral forcorrelation, a resonantlike effect was observed for pure spa-
mation and propagation could likely take place in many in-tially uniform fluctuations, leading to a neat enhancement of
stances under different forcing conditions or spatiotemporaﬂhe diffusion coefficient when the correlation time matched
heterogeneities. the intrinsic rotation frequency of the spiral. In the more
Actually, the response of spiral waves to spatial and/ogeneral case corresponding to a forcing pattern of spatiotem-
temporal forcing of excitable systems has been widely anaporal random illumination, absolute values of the dispersion
lyzed in the literature. Temporal forcii,7], drift of vorti-  coefficient were even larger, featuring again maxima which
ces due to parameter gradiefi® or external field49] are  appeared this time shifted to larger correlation times. These
among the most studied effects. More recently, feedbackobservations were confirmed numerically using a two-
based forcing schemes have been also considéfed1. In  variable Oregonator modgsee Fig. 10)] [26]. In addition, a
addition, either propagation modes or interaction conditiongheoretical formulation, based on a kinematic approach to the
for spirals in heterogeneous media have been also examiné&@iral dynamics, was proposed that reproduced the basic fea-
from different perspectivefl2—15 [see also Ref[16] by  tures observed in the experiments and numeric simulations.
Hendrey et al, although referring this time to complex Here, continuing that research, we present a more exhaus-
Ginzburg-LandayCGL) spirals for oscillatory media tive analytical and numerical study of that phenomenon.
On the other hand, the role of random heterogeneities on
extended excitable systems has recently attracted much a*

tention. Noise as an initiator of new spatial structur&s— 0.006 | Spato-amporinise 0.6 | Spatio-temporal noise
19], or sustaining wave propagation in subexcitable media =0 omm J\ _ ) 6.dsu.
[20-23, is a subject of much theoretical and experimental & o.004 { /1 . 3 oost %%ﬁ
interest. Complementarily, the role of superimposed disorder £ / k E 2 1

on preexisting spatiotemporal patterns has been examined i® g | Nl ol W

relation to propagating pulsd23], CGL spirals[24], and
three-dimensional structur¢g5]. o ‘ 0B ‘ ]
As a direct antecedent of what is going to be presentec 1 o' 10 100 0106710 100 1000
here, we recently reportd@6] on experimental, numerical, i )
and analytical work conducted to investigate the response of FiG. 1. Experimental and numeric results for the effective dif-
fusion coefficienD vs 7. (a) Experimental results for the Belousov-
Zhabotinsky photosensitive reactioth) Numeric results for the
*Corresponding author. Email address: s.alonso@qf.ub.es two-variable Oregonator model. See RgX6] for details.
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Again the theoretical framework we will adopt is that of a simulations of the stochastic kinematic equations. For the
kinematic approach valid for weakly excitable systemssake of clarity, the material is divided into different sections
(sparse spira)s[27]. This approach essentially aims at sim- organized with increasing analytical complexity depending
plifying the whole description of the extended spiral struc-0on the assumed level of random parametric forcing. Section
ture to the dynamics of a single smooth oriented curve whos¥! contains analogous results for spatiotemporal fluctuations.
motion is described by appropriate equations written for itsThere we first present separately, in two sections, the cases
normal and tangential propagation velocities. Later on, suc®f random effects, introduced through the normal and tan-

a phenomenological approach is further reduced to the gdlential velocities of the spiral wave at its tip, reserving the

scription of a pointlike object representing the tip of the SIOi_last section for the treatment of the fully stochastic equa-

ral wave. Proceeding in this way, the whole dynamics igtions. Finally, Sec. VIl is devoted to summarizing our results

parametrized in terms of a set of kinematic quantities, whicind drawing some conclusions.

incorporate the excitability dependent propagation conditions

of the medium where spiral propagation takes place. External !l- KINEMATIC MODEL FOR TWO-DIMENSIONAL
spatiotemporal fluctuations with well-defined statistics and SPIRAL WAVES

correlations are then introduced through such a set of basic ;i thig approach, we start by invoking the so-called
kmemaﬁc parameters. To be. more specific, we .Cons'deguasistatic approximation, which allows us to reduce further
Gaussian, zero mean Ornstein-Uhlenbeck cell distribute

; ) . L . e dynamics of a spiral wave to the motion of its[t&Y]. In
fluctuations, changing continuously with time and mdepen-a Cartesian coordinate frame such equations are written as
dently from cell to cell. In what follows we report on a series
of results organized in such a way that both the noise disper- dax
sion and the correlation length are essentially fixed, while T —Vsina—G cosa, (6N
varying the correlation time. In particular, the cell dimen-
sion, essentially a measure of the spatial correlation of the Y
fluctuations, is assumed to be always comparable to or larger —=Vcosa—Gsina, 2
than the size of the spiral core. For the sake of comparison, dt

we a!so incllude results V.Vith pure tempqral fa”dom f.orcmgwherex andY are the tip coordinates its angular variable,
(spatially uniform fluctuations corresponding to the limit of . 4\ andG denote, respectively, the normal and tangential

infinite correlation length. (respective to the spiral curveip velocities. These two

Motlv_ated indeed by the experimental ob_sgrvatlons on th%uantities depend on curvature effects, parametrized by the
BZ medium we recalled above, but recognizing at the same, «i»ntaneous spiral curvature at the tip dendteand are,
time the difficulty in running such experiments under therespectively expressed as

somewhat ideal conditions appropriate to the kinematic ap-

proach as formulated in Rdf27], we do not aim this time at V=V,— DKk, 3)
either a direct comparison or a fitting of our results with
those of the experiments. Rather, we prefer to consider the G=vy(k.—k), (4)

kinematic equations, appropriate to the spiral motion for
weakly excitable systems, as objects of analytic and numerith terms of the set of basic kinematic paramedgs k.., D,
research by themselves, and undertake a study of their rénd y. Under the limit of weak excitability, implicitly as-
sponse to spatiotemporal external noise. This notwithstandsumed on all of what follows, the curvature correction to the
ing, and as could be expected from what was reported in Refiormal velocity will be assumed negligibldDk<Vy), so
[26], the most distinctive features of randomly forced spiralsthat V reduces toV,, the excitability dependent parameter
i.e., the resonantlike behavior for pure temporal noise andenoting the intrinsic propagation velocity of uncurved
the enhancement of spiral Brownian motion under spatiotemwaves.
poral disorder, are consistently reproduced by the stochastic The particular solution corresponding to a rigid rotating
version of the kinematic model, and both effects are indeegpiral can be simply recovered by taki@=0, i.e.,k.=K,
largely amenable to a theoretical description as explainednd puttinga= wgt, in terms of the pair of related and in-
here. trinsic kinematic parametells., the critical curvature, and

The organization of the paper is as follows. In Sec. Il wew,, the natural frequency of the rotating spifalr],
reproduce, for the sake of self-completeness of the paper, the
basic set of kinematic equations as they are formulated in wo={(DVo) %3, )
Ref.[27]. Sections Il and IV are devoted to specifying the . . .
numerical procedures and noise prescriptions used throughlith ¢ being a numeric constang:=0.685. _ .
out the paper. In particular, this is necessary to adapt the !N general, to obtain solutions for quasirigid rotating spi-
spatially discretized noise parametrization used in the nuf@ls, we need to supplement Eq$)—(2) with appropriate
merical work to the continuous one appropriate to the ana€duations fora and k, both being assumed to be time-
lytical description. Section V is fully dedicated to the situa- 9ePendent quantities. These equations read
tion of spatially uniform fluctuationgpure temporal noige

. gy oY= dk 1

The analytical treatment to calculate a diffusion coefficient is —=——(k—ky), (6)
sketched there, together with the results of some numerical dt Ty
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da eral orders of magnitude larger than the rotation period, typi-
g9r @t Gk (7)  cally at least 500,.
Spatiotemporal noise is distributed in square cells or pix-
Apart from the characteristic rotation period, H6) in-  €ls of linear dimension in a completely uncorrelated way

troduces throughrg a Second “me Sca|e into the pr0b|em' and Satisfying |nd|V|dUa”y the Ornstein—UhlenbeCk StatistiCS
corresponding to the relaxation of the instantaneous tip cu
vature to its critical value. The parameteg will play an

important role in what follows and can be expressed in terms (pij(Déqut))y=0ahge 185,
of wy as
5 {P.Q}={Vo.kc}. (12)
Tg™ Yo' ) In what follows we report on numerical experiments on

spiral wave dispersion organized in series corresponding to
In the context of the phenomenological kinematic theory fixed values ofl. This quantity, i.e., the noise correlation
D and y are not restricted by any inner condition, so thatlength, was prescribed always larger than the spiral cbre (
they are normally assumed to be of the same d@ér This  >2R,; 1=100 s.u. or 200 s.u. for a typical value &,
means that the two time scales appearing so far in the theor 46 s.u.). In each series we varied the correlation time
are comparable. Finallyw can be formally expressed in keeping the noise dispersicn’ﬁ.Q constant. For the sake of

terms ofk by generalizing Eq(5) above to comparison, numerical simulations were also performed with
. pure temporalspatially unifornm) noise corresponding to the
w={(DVo) "k (9 limit of infinite I.

. . _ . The total size of the grid has been chosen one order of

The set of kinematic equatior{4)—(9) is now complete  \5qnitude bigger than the spiral core: from 1000 s.u. to 6000
and_ready to be formally e>§am|ned when_the intrinsic klne—slu” depending on the dispersion of the spiral. Typically, the
matic parameters are subjected to spatiotemporal fluctugsmper of realizations needed to evaluate the diffusion co-

tions. In principle, and lacking a more fundamental underficient range from 300 for uniform fluctuations to 200 for
standing of the way such parameters really depend on thgq spatiotemporal noise.

excitability of the system, one could assume that any of
them, i.e.,Vy, k., and the pair of curvature related coeffi- V. NOISE SPECIFICATIONS
cientsD andy, could be sensitive to noise effects. However, :

the system of kinematic equations is so complicated that sim- |n the preceding section we have a|ready described nu-
plifications are necessary to render our analysis clear enougfierically the way random fluctuations are introduced into
to detect neat and systematic effects. In this sense and basgfé kinematic scheme. However some further specifications
on our simulation results, we tend to think thafandk. are  are necessary.

by far the most natural candidates to incorporate parametric To put our analysis here in the perspective of the experi-
noise. In addition, it will be clear in what follows that the mental work on the BZ illuminated medium, and before
role of structured noise superimposed on these two parangtarting our simulations with spiral dispersion, we deter-
eters are notoriously distinct and we are confident that theyhined numerically the dependence of the two basic kine-
capture the most representative effects of external fluctugmatic parametery/, andk, on the illumination parameter.
tions interacting with the spiral wave dynamics. So we gen-The summarized results of such numerical work, based on

erally consider situations with the two-variable version of the Oregonator model adapted to
— a light-sensitive BZ medium, convinced us that fluctuations
Vo=Voté&y,, (10 in V, and k. are correlated, the simplest choice being to
. assume them to be linearly correlated and of similar relative
ke=ke+ &k (11)  magnitudegsee Fig. 2

Using the notation introduced previously in EG2), this

whereéy, and{y_denote zero-mean, Gaussian, spatiotempomeans that the three corresponding noise dispersions, de-
. .. . . 2 2 2 ;
ral noises whose statistics are further described in the follownoteday, v . oy, anday , will actually be assumed to
ing sections. be proportional. To simplify the notation we hereafter denote
a5,.v, Simply by oy and correspondinglyry, | =voy,
and o, =170, in terms of anad hoc proportionality
The numerical simulations have been run with an explicitconstant denoted, to be fixed later on.

Euler method for the integration of the equations for the tip The second specification refers to the analytical results
coordinates. The time integration step has been chosen #sat are going to be presented in the next sections. As will
At=1 t.u., whereas the period of the deterministic spiralbecome clear in what follows, most of these results do admit
was, for most of the case®y =290 t.u.(temporal and spatial elegant formal generalizations beyond the Ornstein-
units depend on the excitable system where the theory ighlenbeck-like temporal correlation prescribed in all our nu-
applied. The total time of simulation has always been sev-merical work according to Eq12). This means that analyti-

I1l. NUMERICAL PROCEDURES
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T T 0.9 - ' - relation length. So we can enforce the isotropic character of
449 ] b) the correlation function with different forms like the one
adopted here,

0.8

[r—r’|?

C(|r—r’|)=(1— 2 ) (15
which renders the analytical treatment easier. Very similar
results(not shown were also obtained with other isotropic
functions assuming either exponential or Gaussian depen-
dences.

To completely adapt our spatiotemporal random forcing
to the kinematic approach, note that, within the spirit of
its quasistatic version as it is going to be used here, the
e 05 , , , spatial structure of the noise will enter only through the suc-

0 0.001 0A002¢0A003 0.004 0.005 0 0.001 OI;?2 0.003 0.004 CeSSiVG pOSitionS ViSited by the Wandering tlp An exact
analytic approach following from such an ansatz is out of our

FIG. 2. Results for kinematic parametevg and k. obtained  reach, given the complexity of the set of stochastic kinematic
from numerical simulations of the two-variable reaction-diffusion equations. So we introduce hereafter a “quasideterministic”
photosensitive Oregonator modg26] with numerical values of approximation by defining effective spatial dependent noises
f=1.4,9=0.002,¢=0.01,D,=1, andD,=0.6 (a) Linear behav-  as&(R(t),t) whereR(t) stands for the tip deterministic tra-
ior is observed for the normal velocity, of the spiral versus the jectory, chosen in our case to be represented at its leading
illumination parameters. (b) Critical curvaturek, of the spiral  grder by a circular motion with frequencw,, corre-
waves versus illumination pa_&rametﬁrwhgre the_critical curvgture sponding to the unperturbed steadily rotating spifa(t)
ia(svo /bgezeDnRg)gglE:;;z]a.ted with the kinematic expressitg :u'fos(ﬁgig’gts'ﬁr‘;ﬂ)' R(_t/) _ RO(COSth’,Siant’_)]._ inen

ploiting the analytic possibilities it offers,
. _ , this ansatz turns out to be highly rewarding, although one
cal results are going to be obtained as much as possible fQp, aagily anticipate that such an approximation will break

stationary noises, with generic time correlation denoted agq for spatiotemporal disorder of large correlation times,
(g_(t)g(t ))oc(_:§(|t—t _|) (spatial dependence is not kept in oo \ill be discussed later on.
this expression to simplify notation and because it is not

going to be explicitly necessary in what follow®bviously,

when we compare analytical expressions with numerical re-

sults, we will adapt our formal scheme to the Ornstein- Before addressing the general case of spatiotemporal dis-

Uhlenbeck prescription by replacingC.([t—t'[) by  order, we are going to consider fluctuations modeled as pure

ole It temporal (spatially uniform noise. Different ways to pro-
The final necessary specification refers to the way theeed can be examined separately depending on the chosen

discrete spatial nature of the noise in the numerical simulaparametric forcing.

tions Eq.(12) is translated into our space-continuous phe-

nomenological equations. Actually, we had several options a_ Fluctuations in the normal velocity for a steady (w= )

that should be conveniently discussed. In any case, the nec- rigid rotating spiral (k=Kk.)

essary condition to be fulfilled is the statistical independence

of the temporal and spatial correlation components

0.6

V. SPATIALLY UNIFORM FLUCTUATIONS

In the first calculation, rather artificial but useful in illus-
trating the most important steps of our analytic procedure,
(E(r,DEr 1))y=Cyl|t—t'[)C(r—r"). (13)  Wwe have worked with a system whe#e= w, andk=k are
assumed to be constant parameters, while fluctuations are
The obvious choice is to prescribe a triangularlike formintroduced only througlv, at the tip equations. This situa-

for the spatial part, i.e., tion could be understood, in fact, as a circular motion of the
tip around a core with a fluctuating radius. The set of kine-
[x—x'] ly—y’| matic equations appropriate to this case reduces to
C(r—r")y=|1- - (14
I I dX,
—=—V0(t)Sinw0t= _[Vo+ gvo(t)]sinwot, (16)
This correlation function is anisotropic and the calcula- dt
tions with it become very complicated. Other simpler choices a4y
that we expect to give qualitatively similar but simpler re- dv¥o _ _
sults arise from the following argument. Since diffusion is a ar ~ Vo(hcosmot=[Vot &y (D]coswet.  (17)

process that is related to long times and large distances, the
behavior of the system should be independent of the local Representative trajectories following from these equations
topology of the system while keeping the characteristic corare shown in Fig. 3.
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1000 T T T

dz o
(@ —=[Vo+ &y (t)]ie! @0, (18
dt 0
500 | 1 whose formal resolution leads to
3 Z= &ei‘”otﬂ tg (t")elwot' gt’ (19
¢ ° 1 g 0°Vo '
A linear time dependence of the squared dispersion of the
=500 - 8 spiral tip is a signature of Brownian motio\Z2)=2dDt,
characterized by a diffusion coefficient defined as
-1000 : : ' dz|? dZ
1000 —500 0 500 1000 2dD= =2Rqg { —2Z* : (20
X (s.u.) dt t—oo dt t—o
1000 T T T . . . . .
(b) with d=2 for our two-dimensional simulations. So, the
problem of the calculation of the diffusion coefficient re-
w00 | | duces to the calculation of the avera@eZ/dtZ*)
dz t
_ Re ( ——Z* =f (£y,(D&v (1)) cOSw(t—t")dt.
2 o at oo
- (21
Invoking the stationary character of the fluctuations,
-500 -
d|Z|2 Cos,
< dt Hoc: ngo(wO)’ 22
-1000 ! ! !
-1000 -500 0 500 1000
x () whereP*{w,) stands for the power spectrum of the noise at
1000 . . , the characteristic frequency of the rotating spiral
© . .
Pg"m)zf Cg(t)eimdtZZL C,(t)cosQt dt.
500 - -
(23)
3 The final expression for the diffusion coefficient then sim-
¢ 0 ply reads
— l Cos,
500 | ] D=7 ngo(wo)- (24
If we choose as a particular noise the Ornstein-Uhlenbeck
-1000, : : s forcing, this general expression reduces to
-1000 -500 0 500 1000
x (s.u.) 2
v, T
FIG. 3. Numerical simulations of trajectories corresponding to D= S T 23 (25
the spiral tip randomly forced according to Eq46)—(17), with 1+ wpr

different correlation times(r=10 t.u.7=50 t.u.;7=500 t.u). For
simplicity the displacements depicted in this and related following The simulation results in Fig. 4 perfectly agree with the
figures actually refer to the center of the spiral core. The spiratheoretical calculation. Up to this point the treatment is ex-
parameters ar¥,=1, k,=0.1, D=1, y=1.5,R,=46.16 s.u..,T,  act, so numerical results in this section are also useful as a
=290 t.u., andry=30.80 t.u. Simulations are run for a total time of benchmark calculation to check our simulations routines.
3000T,. The fluctuations iV, are introduced With)'\z,o:0.0025. What is important in Fig. 4 is the resonant effect of the
diffusion coefficient when the time scale of the noise, param-
The explicit calculation of a diffusion coefficient account- etrized by its correlation time, matches the characteristic
ing for the tip wandering is then exact and particularly time scale of the spiral rotation parametrized by the inverse
straightforward. We start by defining the complex quantityof its rotation frequencyryax= wg 1=Ty/27. Remarkably
for the tip positionZ=X+iY. Then we can rewrite Egs. enough, this important feature of the temporal fluctuations,
(16)—(17) as, which was neatly observed in the corresponding BZ experi-
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0.2 T 0.2 T
0.15 | 4 0.15
3 3
3 04 3 0
k2 @
[m] [m]
<t <
0.05 0.05

100 1000
T (t.u.)

L 0
100 1000 10
T (t.u.)

0
10

FIG. 4. Numerical results for the effective diffusion coefficient FIG. 5. Numerical results for the effective diffusion coefficient
D vs 7, following from Eqgs.(16)—(17) for the tip motion with an D vs 7 following from Egs.(26)—(28) for the tip motion with an
average of 300 realizations for each correlation time. The spirahverage of 300 realizations for each correlation time. The spiral
parameters are those of Fig. 3 WW@OZO.OOZS andwy=0.0216. parameters are those of Fig. 3 widﬁO:O.OOZS andw,=0.0216,
Simulations are run for a total time of 4T,. The continuous curve andvr=0.1 anda\z,okc .m=0.0286 as calculated from E(3). Simu-
fit corresponds to the analytical result given by ER5 with  |ations are run for a total time of #UT,. The continuous curve fit
0\2/0 o= 00026 andwop = 0.0218. corresponds to the analytical result given by EHG2) with

02 mnum=0.0290 andwgpy,=0.0216.

ments as recalled in the Introduction, appear to be so robust °°"
that it is already captured at the simple level of descriptiono arrive to a final result analogous to Eg84) above

proposed so far.
1 .

_ T rpecos co sin

B. Fluctuations on the normal and tangential velocities for a D= 4[P§v0(w°) + P wo) + P‘//s‘vo(wo)]' (3D

steady (w= w) nonrigid rotating spiral (k#Kk.)
For the particular case of the Ornstein-Uhlenbeck statis-

To the preceding situation, we now add fluctuations intro_tics the left averages can be explicitly calculated and put
duced through the parameteg, keepingw and this time to éther into a er?eral ex ressioﬁ?] forythe diffusion coe?fi—
and alsory constant. The set of kinematic equations are ex- 9 9 pres .

cient. The result is totally similar to the previous H85),
pressed now as . . : - :
but now written in terms of a mixed noise intensity,

dXo )
gt = Vo(Osinwgt+ YLk(t) —Kke(t)Jcoswet,  (26) U\Z/Okc,m ,
~ T 5 1L 2.2 (32
1+ wpr
dYo _
Tt~ Vo(coswot o k() —ke(D)]siNwot,  (27)  where the exact result farg, ., reads
1[k(t) ke(t)] (28) 2 2 [ 14 2,2 079 @0 Ty
dt - 7. - : g =0 + 14 v i
dt g ¢ Voke.m— 9V, Y +w§7‘§ 1+w(2)TS
(33

A formal resolution of Eq(28) is first needed to define

the formal noise acting on the tip’s curvatuke denoted
(1), which can then be introduced into EqR6)—(27),
leading similarly as before to
dz o .
gi Vot &y (t)]ie' o+ y(t)e' o', (29)
In analogy with Eq(23), we define this time the comple-
mentary quantityP2"(Q2), as

o

PI(Q)=2| Ct)sinQtdt,
0

(30

Numerical results for the diffusion coefficient following
from simulations of Eqs(26)—(28) are shown in Fig. 5,
which again show perfect agreement between analytical and

numerical results.
One particular simplification of this result corresponds to

retaining fluctuations of, only (Vo= constant). In this case
there are no fluctuations ¥, and the final result reduces

simply to
w(Z)TS T

2 1+w37§ l+wg7'2'

R
(34

D=
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0.2 . during a rotation period of the tip. The effect of temporal,
spatially uniform noise is thus most effective when noise
variations match the intrinsic time scale of the rotating spiral.

0.15 | .

VI. SPATIOTEMPORAL FLUCTUATIONS
E Now according to what was anticipated in Sec. IV, the
3 04} _ fluctuating parameters are going to depend on the tip position
= and timeVy=V,(X,Y,t) andk.=k.(X,Y,t). The quaside-
= terministic circular trajectory is parametrized as
0.05
_ VO iwgt
Z(t)=—¢e'“o (36)
@o
%0 100 1000 so that
T (t.u.)
Vo
FIG. 6. Numerical results for the effective diffusion coefficient |R(t)— R(t’)|2=2—2[1— coswo(t—t")]. (37)
D vs 7 following from the full stochastic equations for the tip mo- Wq
tion with an average of 300 realizations for each correlation time.
The spiral parameters are those of Fig. 3 m&ozo.oozs, g As we have anticipated, we are going to use such a

=0.0216, andy=0.1. Simulations are run for a total time of“Ig. quasideterministic trajectory to approximate the spatial cor-
The continuous curve fit corresponds to the effective result given byelation function, which according to E(L5) reads

Eq. (35) with agﬁnum= 0.00143 andw = 0.0215.

2
once again with the same dependence but with another C(lr=r'])= 1—2%[1—c05w0(t—t’)] . (38

prefactor. o

Noise-distributed effects introduced thouyl or k. are
quite different from those of the case with spatially uniform
The next natural step in our analysis consists in includingluctuations, as will become clear in what follows. For that
fluctuations in the kinematic equations but now not onlyreason we treat them separately in the next two sections.
explicitly in the tip equations but wherever the parameterdNote in this respect that the level of approximation in Sec.
V, andk. appeatr, i.e., also in the implicit expressions ér VIB is different from that in Sec. VB, since here fluctua-
andry. tions will only appear ork. whereas there they entered into
No analytic calculations are available for this situation,both V, andk .
because of the great complexity of the analyses involved.
Howgver, for Ornstein-Uhlenbeck noise and according to the o ., ctuations in the normal velocity for a steady (= wp)
previous cases, we expect the same formal result to hold,
expressing this time in terms of an effective noise intensity

C. Fully stochastic equations(w, 7y nonconstant andk#k)

rigid rotating spiral (k=k.)
As we have done for the temporal case, we are going to

O- o 1 . . . . . . . . .
et Vo begin with the simplest situation, i.e., a circular motion with
2 a fluctuating radius. Similarly to Eq18),
p=2ef_T (35)
2 1+ wé '

dz o
a=[vo+ v,(Z,1) Jie'o (39

To confirm this conjecture we have conducted simulations
for different noise realizations and several correlation times. To solve this stochastic differential equation, we proceed
The corresponding results f@ are shown in Fig. 6, fully as we did in the temporal cagsee Eq.(19)], invoking
confirming our ansatz. this time the conditions of Eq(38) for the noise correla-

All the results in this section can be summarized by saytion. Following the same formal steps as we did before, we
ing that a neat resonantlike dependenceDofvith 7 ex-  arrive at
pressed by the maximum at wgl is obtained in full agree-
ment with experimental results. The physical interpretation d|z|? *
of this behavior is as follows. At fixed noise dispersiof, ar =2f0 ditCy(t)coswot
the effect of random perturbations must disappear for van- e
ishing 7 since fast bounded fluctuations will be averaged out 421 a4V
by the system. On the other hand feg7>1, the spiral cores ( ~ 22 +— >
lose mobility because the noise does not change appreciably wpl wpl

coswpt |. (40
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N\

VO(i’j' 1)
-1

FIG. 7. Boundary effects on spiral motion corresponding to the
normal velocity dependence on spatial fluctuations. For the sake of
simplicity, the picture corresponds to the limit of frozen noise
finite 7). The tip motion is supposed to begin at the left on the pixel
[i,j] where it rigidly rotates with a characteristic radius. After half-
period it crosses to the next noise pikelj — 1], where the velocity
and in turn the rotation radius are different. After completing an-
other half-period the tip has gained a net displacement of
2[Ro(i,j —1)—Ry(i,j)] per rotating period. This effect would re-
peat for the next period.

The diffusion coefficient can thus be expressed as a func-
tion of the power spectrum of the noise at the characteristic
frequency and multiples of this frequency

P00 2

D= [PE2(0)— 2PE¥(wo) + PE(2w)].

Vo

+
4 4w§|2
(41)

For the Ornstein-Uhlenbeck noise this formal expression
turns into
2 2
Ov, T v, Vg
- - T— + :
2 1+ ngz 2 a)(2)|2 1+ a)(2)7'2 1+4w(2)7'2
(42)

Note that this last expression, compared with the corre-
sponding result, Eq25), for spatially uniform fluctuations,
correctly predicts an enhancement of the spiral dispersion
due to the spatiotemporal character of the random forcing.
However, the unbounded quasilinear growth dfwith 7,
which appears in Eqg42), is an artifact of our quasideter-
ministic approximation to the correlation function that will
be corrected later on. Before doing that, it is interesting to
examine the dispersion trajectories following to the stochas-
tic dynamics prescribed by E¢B9). As shown qualitatively

2T T

2000
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§ by

-1000

-2000

—2000

2000

-1000

0 1000
x (s.u.)

2000

~~
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N

1000 L

[\d

y(s.u)

-1000

-2000

—2000 -1000

2000

0 1000
x{(s.u.)

2000

(c)

1000

7

y(s.u)
o

-1000

-200
3000 -1000

FIG. 8. Numeric simulations of trajectories corresponding to the
spiral tip randomly forced according to E9), with different

0 1000
X (s.u.)

2000

in Fig. 7, the core diffuses temporally until it finds a bound- correlation times(7=50 t.u.7=1000 t.u.7=10000 t.u} and a cor-

ary between noise cells. Then, for large enoudihe tip does

relation length of =200 s.u. The spiral parameters are those of Fig.

one part of the rotation motion with one velocity and another3. Simulations are run for a total time of 300 The fluctuations in
part with another velocity. If both velocities are different, Vo are introduced Withr\2,020.0225.

which is likely to occur since noise realizations are uncorre-

lated in each cell, the radius will be different too. The final scale numeric simulations shown in Fig. 8 reproduce this
result is that there is a net transversal velocity experienced byotion mode, which indeed turns out to be a very effective
the tip and a corresponding lateral drift of the spiral core indispersion mechanism for spiral dispersion singularly for
its attached motion to the boundaries of the noise cells. Largkrge values ofr.
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10' . y T 100 T

(a)

°

-
(=]

y (s.u.)

4D (s.utu.)

-100 1

-200 3
-200 -100 0 100

A
10° 10° 10° X (s.u.)
T (t.U.) 100

FIG. 9. Numeric results for the effective diffusion coefficiént (b)
vs 7 following from Eq.(39) for the tip motion, with an average of
200 realizations for each correlation time. The spiral parameters are
those of Fig. 3, witha\2,0=0.0025 and =200 s.u. Simulations are 0
run for a total time of 1000,. The continuous curve fit corresponds
to Eq. (42) corrected with an effective correlation tinfjesee Eq.
(43)] with 5 =0.0025, and fitting paramete¥&/ gl >=0.11 and
7o=4000 t.u. Dashed line, shown for comparison, corresponds to
the case of spatially uniform fluctuations. -100 -

3

Nh T
W

y(s.u.)
Y RS
g

Needless to say and in view of the tip trajectories we have
just described, it would have been rather surprising that our
guasideterministic ansatz would have been able to reproduce
the numeric results for correlation times larger than typically 2005 ‘ g : 0 : 160
the rotation period of the spiral. Actually, by proposing an X (s..)
ansatz based on a deterministic closed motion of the tip, we
introduce spurious effects at larggsince the effective noise 100 '
realizations experienced by the tip appear strongly correlated (©)
after every rotation period. In fact, the actual trajectory is not
closing in itself and decorrelates the effective noise by ex-
ploring spatially uncorrelated regions.

The most reasonable way to overcome this limitation is
by introducing a cutoff of the correlation times. This
amounts to replacing by 7, defined as

JHRVAY/

y (s.u.)

1 1 1 _100 |
S 43 100

in terms of thead hocparameterr., interpreted as the time

needed for the tip to cross over a pixel, and in what follows
considered as a fitting parameter. Proceeding in this way, 2% ‘ Z100 ' 0 ' 100
analytical and numerical results are perfectly comparable, as X (s.u.)

shown in Fig. 9.

B. Fluctuations in the tangential velocity for a steady

(@= ) nonrigid rotating spiral (k#k.) FIG. 10. Numerical simulations of trajectories corresponding to

fluctuations on the tangential velocity of the tip, with different cor-
Numeric simulations corresponding to this situation arerelation times =20 t.u.7=2000 t.u.7=200 000 t.4. and a correla-
shown in Fig. 10. They are indeed very different as com-ion length ofl =40 s.u. The spiral parameters have been changed
pared to those presented in the last section as a clear mam- increaser, to better see the pinning effetsee text Vo=1,
festation of the singular effect of the spatiotemporal randonk.=0.2, D=1, y=0.4, Ry=16.32 s.u,, T,=102 t.u., andr,
forcing when allowed to act on the sprouting or contracting=40.8 t.u. Simulations are run for a total time of 150g0The
motion of the spiral. A close examination of the tip motion fluctuations ink, are introduced withr{, =0.25 andv=0.1.
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(a)

G=y(k(i-1,j)-k (i)

0.008

.......

k=kc(i,j) - ) ™
k_kc (le) .
Vo ¥/ 6=0 3 0.006 |
&
S 0.004
(-1 \ (i)
~ = 0.002 |
(i-l’j-l) i TR (1,_]-1)
0 . {kooeapl
10 100 1000 10000

T {t.u.)

(b)

FIG. 12. Numerical results for the effective diffusion coefficient
D vs 7, following from fluctuations through the tangential velocity.
The spiral parameters are those of Fig. 10 vw'rﬁ?):o.ZS, v=0.1,
and | =40 s.u.(squares with an average of 200 realizations for
each correlation time, arlé= 60 s.u.(diamond$, with an average of
O 50 realizations. Simulations are run for a total time of 20100
\?=Y(kc(1'1’1)?kc(l’l)) Dashed line, shown for comparison, corresponds to the case of spa-
/ tially uniform fluctuations.

(-1 @) ally, this pinning effect enables us to easily interpret the
Tagl Q1) characteristic behavior of the diffusion coefficient for long
correlation times D« 1/7) [see Fig. 12 A simple argument
goes as follows. For large the dispersion motion inside a
pixel, as represented by E4), corresponds to a time lag,

FIG. 11. Boundary effects for the curvature dependence orfO' fixed |, proportional tor [17=27/(1+ w57")t]. Faster
the fluctuations forcing the spiral motion. The tip is shown to ro- transitions between pixels, when they correspond, take a
tate rigidly[k=K(i,j)] on the pixe[[i,j] with no tangential veloc- ~ Very short time. So essentially the tip dispersion increases by
ity. When it crosses the boundary, the value kgris updated to ~ fixed amounts of ordel® in time steps proportional to.
ke(i—1,) but the instantaneous tip curvature must evolve from As we can see in Fig. 12 such a pinned motion drastically
the previous valuek.(i,j). A tangential velocity appears right reduces the spiral dispersion for large the effect being
after crossingG= y[k.(i—1,j) —k(i,j)], which is positive(nega-  more pronounced for larger pixel size. Obviously, tip an-
tive) if ko(i—1,j)>(<)k(i,j) as we can see on the firgtecond  choring is longer lasting for larger pixels where the tip can
picture. rotate without the presence of the pixel boundaries. When

reveals that it quasisteadilv rotates inside a cell until the pixel size is smaller the tip is forced to move across the
q y Eixel boundaries more often leading to some enhanced dis-

(i-1,j-1)

boundary is found when the tip chooses either to remain i ersion. We finally emphasize that since the curvature relax-
dtion time is set by the parametey, the pinning effect is

the same pixel, after which the boundary sends the core bac

or to_leave It very qu'Ckly' The tip demd_es its behavior de'more effective as this value increases. Furthermore by com-

pending on the relation between the pair of valuekoin paring globally the results in Fig. 12 with those in Fig. 9 we
see that the values of the diffusion coefficient under spa-

the two adjacent pixels.

%Totemporal and spatially uniform fluctuationskp are simi-
lar, whereas in Fig. 9, when considering fluctuation/j
the diffusion coefficient under spatiotemporal fluctuations is
typically one order of magnitude larger than for spatially
uniform noise.

ing a boundary the value &, changes instantaneously, but
the change irk is not completely adiabatic, as dictated by
the characteristic relaxation timeg (provided this time con-
stant is large enoughThus we do have a non-null and sto-
chastically varying tangential velocity for the tip given by
G=1vy(k.—Kk). Then if k;>k (k.<k), there is a positive
(negative tangential velocity, and the tip returns t{goes
straight to the previousnexd pixel [see Fig. 11 In this last section we are going to consider the most
As a matter of fact, this behavior closely resembles a sorgeneral scenario retaining spatiotemporal fluctuations in both
of pinned motion, according to which the tip remains con-Vy=Vy(X,Y,t) andk.=k.(X,Y,t). It is quite reasonable to
fined within a cell for long-time intervals, interrupted by expect mixed trends of spiral dispersion combining the two
very fast episodes when crossing the pixel boundaries. Actudistinctive modes just mentioned. This is indeed the

C. Fully stochastic equations(w, 7y nonconstant andk#Kk.)
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1000 T 2 T T T
a)

1.5
500 - 1

y (s.u)

—_

4D (s.utu)

0.5

-500 -
-500 0 500 1000 0 L L L

10° 10° 10
T (tu.)

1000 .
(b) FIG. 14. Numerical results for the effective diffusion coefficient
D vs 7 following from the full stochastic equations for the tip mo-
tion with an average of 200 realizations for each correlation time.
The spiral parameters are those of Fig. 3 wizt60=0.0225 and

500 - ] | =100 s.u. Simulations are run for a total time of 10g0Dashed
line, shown for comparison, corresponds to the case of spatially
uniform fluctuations.

y (s.u)

case as depicted by the set of representative trajectories
= shown in Fig. 13. If we accept, as proposed here following
%\ the results quoted in Sec. IV, that the relative values of the
fluctuations in both parameters are of the same order, one
can easily conclude that the dominance of each mode will
essentially depend on the value of the correlation time rela-
—500_50 0 500 7000 tive to the time scale of the curvature relaxation. In the limit

X (s.u.) of very small values of, the spatiotemporal structure of the

noise is going to be irrelevant, given the pointlike, i.e.,

1000 ' purely tip based, description of the spiral motion at the origin
(c) of the quasistatic version of the kinematic approach em-
ployed here. For larger values afbut still smaller thanr,
the effects of random forcing on the normal velocity are
dominant and the dispersion of the spiral is very effective as
dictated by the erratic motion of the tip attached to the pixel
boundaries. Finally, when increasingand exceedingy we
} expect a crossover to a pinnedlike much less effective domi-
nated dispersion. These qualitative predictions fully explain
the numerical results summarized in Fig. 14.

500 - 1

il

y (s.u)

Y

)
P

VII. CONCLUSIONS

We have systematically examined, analytically and by
. means of numerical simulations, the behavior of spiral exci-
500 1000 tation waves forced with spatiotemporal random forcing. Our
x(s.u) initial motivation was the related experiments we had con-
ducted with the light-sensitive version of the BZ reaction.
The formalism presented here can actually be extended to
FIG. 13. Numerical simulations of trajectories correspondingspiral waves in any excitable syst¢8+5] under the limit of
to the full stochastic scheme, with different correlation tinfes weak excitability. In any case, the necessary ingredient is to
=100 t.u.7=1000 t.u.7=30 000 t.u) and a correlation length df  know the relations, such as those in Fig. 2, between the ki-
=200 s.u. The spiral parameters are those of Fig. 3. Simulations areematic parameters and the externally controlled excitability.
run for a total time of 1000,. The fluctuations iV, andk. are  This is so because our approach is based totally on the use of
introduced With0\2,0=0.0225 andv=0.1. the quasistatic version of the phenomenological kinematic

-500
-500

o
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theory, which reduces the whole spiral dynamics to the mo- Following this paper one could imagine either experimen-
tion of a pointlike object representing its tip. tal, numerical, or analytical extensions of the problem at

The statistics considered refers to Ornstein-Uhlenbeclhand, aimed particularly at examining the behavior of excit-
forces, although the analytic approach has been generalizedble systems, or spiral supporting related ones, under spa-
as much as possible, especially in the particular and simplgiotemporal random forcing patterns other than those pre-
situation of uniform fluctuationgpure temporal forcing In  scribed here.
this case, a neat resonantlike dependence of the diffusion
coefficient on the correlation time for fixed noise intensity
has been evidenced.

Under the more general scenario corresponding to spa- Discussions with J. Casademunt, L. RegmtPiscina, and
tiotemporal disorder, a pair of distinctive dispersion modes]. M. Sancho are acknowledged. We also thank the group of
have been identified. A very efficient one, represented by afisica no linealof the University of Santiago de Compostela
erratic motion attached to the pixel boundaries, results fronfior providing us with the data of Fig. 1 and particularly to I.
the fluctuations introduced into the normal velocity of the Sendira-Nadal for some comments. This work was partially
spiral tip. When the correlation time is increased, a crossovesupported by the Comisiolnterministerial de Ciencia 'y Tec-
takes place from this behavior to a much less favorably disnologa and Comissionat per a Universitats i Recei@an-
persed, pinnedlike motion as follows from the effect of fluc- eralitat de Catalunyaunder Project Nos. PB96-1001 and
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