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Noise-induced Brownian motion of spiral waves
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We study the erratic displacement of spiral waves forced to move in a medium with random spatiotemporal
excitability. Analytical work and numerical simulations are performed in relation to a kinematic scheme,
assumed to describe the autowave dynamics for weakly excitable systems. Under such an approach, the
Brownian character of this motion is proved and the corresponding dispersion coefficient is evaluated. This
quantity shows a nontrivial dependence on the temporal and spatial correlation parameters of the external
fluctuations. In particular, a resonantlike behavior is neatly evidenced in terms of the noise correlation time for
the particular situation of spatially uniform fluctuations. Actually, this case turns out to be, to a large extent,
exactly solvable, whereas a pair of dispersion mechanisms are discussed qualitatively and quantitatively to
explain the results for the more general scenario of spatiotemporal disorder.
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I. INTRODUCTION

Spiral excitation waves are among the most paradigm
examples of spatiotemporal self-organizing structures
nonequilibrium extended systems@1#. They have been ob
served in very different systems, ranging from the prototy
cal Belousov-Zhabotinsky~BZ! reaction@2# or catalytic sur-
face processes@3#, to aggregating colonies of social amoeb
and other microorganisms@4# or propagating patterns o
heart tissue excitations@5#. Given the wide variety of sce
narios just mentioned, one could easily admit that spiral f
mation and propagation could likely take place in many
stances under different forcing conditions or spatiotempo
heterogeneities.

Actually, the response of spiral waves to spatial and
temporal forcing of excitable systems has been widely a
lyzed in the literature. Temporal forcing@6,7#, drift of vorti-
ces due to parameter gradients@8# or external fields@9# are
among the most studied effects. More recently, feedba
based forcing schemes have been also considered@10,11#. In
addition, either propagation modes or interaction conditio
for spirals in heterogeneous media have been also exam
from different perspectives@12–15# @see also Ref.@16# by
Hendrey et al., although referring this time to comple
Ginzburg-Landau~CGL! spirals for oscillatory media#.

On the other hand, the role of random heterogeneities
extended excitable systems has recently attracted muc
tention. Noise as an initiator of new spatial structures@17–
19#, or sustaining wave propagation in subexcitable me
@20–22#, is a subject of much theoretical and experimen
interest. Complementarily, the role of superimposed disor
on preexisting spatiotemporal patterns has been examine
relation to propagating pulses@23#, CGL spirals@24#, and
three-dimensional structures@25#.

As a direct antecedent of what is going to be presen
here, we recently reported@26# on experimental, numerica
and analytical work conducted to investigate the respons
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spiral waves to structured noise. The particular system c
sen corresponds to the photosensitive BZ reaction under
tiotemporal fluctuations in the illumination. In the absence
randomness, the initial configuration was that of a stead
rotating spiral with no net translational motion. When t
noise was switched on, Brownian wandering of the spiral
was evidenced and characterized in terms of a diffusion
efficient, showing a nonmonotonic dependence on the
rameters of the noise@see Fig. 1~a!#. In particular, perturbing
the spiral with fixed noise dispersion and varying its tim
correlation, a resonantlike effect was observed for pure s
tially uniform fluctuations, leading to a neat enhancemen
the diffusion coefficient when the correlation time match
the intrinsic rotation frequency of the spiral. In the mo
general case corresponding to a forcing pattern of spatiot
poral random illumination, absolute values of the dispers
coefficient were even larger, featuring again maxima wh
appeared this time shifted to larger correlation times. Th
observations were confirmed numerically using a tw
variable Oregonator model@see Fig. 1~b!# @26#. In addition, a
theoretical formulation, based on a kinematic approach to
spiral dynamics, was proposed that reproduced the basic
tures observed in the experiments and numeric simulatio

Here, continuing that research, we present a more exh
tive analytical and numerical study of that phenomen

FIG. 1. Experimental and numeric results for the effective d
fusion coefficientD vs t. ~a! Experimental results for the Belousov
Zhabotinsky photosensitive reaction.~b! Numeric results for the
two-variable Oregonator model. See Ref.@26# for details.
©2001 The American Physical Society05-1
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S. ALONSO AND F. SAGUE´S PHYSICAL REVIEW E63 046205
Again the theoretical framework we will adopt is that of
kinematic approach valid for weakly excitable syste
~sparse spirals! @27#. This approach essentially aims at sim
plifying the whole description of the extended spiral stru
ture to the dynamics of a single smooth oriented curve wh
motion is described by appropriate equations written for
normal and tangential propagation velocities. Later on, s
a phenomenological approach is further reduced to the
scription of a pointlike object representing the tip of the s
ral wave. Proceeding in this way, the whole dynamics
parametrized in terms of a set of kinematic quantities, wh
incorporate the excitability dependent propagation conditi
of the medium where spiral propagation takes place. Exte
spatiotemporal fluctuations with well-defined statistics a
correlations are then introduced through such a set of b
kinematic parameters. To be more specific, we cons
Gaussian, zero mean Ornstein-Uhlenbeck cell distribu
fluctuations, changing continuously with time and indepe
dently from cell to cell. In what follows we report on a seri
of results organized in such a way that both the noise dis
sion and the correlation length are essentially fixed, wh
varying the correlation time. In particular, the cell dime
sion, essentially a measure of the spatial correlation of
fluctuations, is assumed to be always comparable to or la
than the size of the spiral core. For the sake of comparis
we also include results with pure temporal random forc
~spatially uniform fluctuations!, corresponding to the limit of
infinite correlation length.

Motivated indeed by the experimental observations on
BZ medium we recalled above, but recognizing at the sa
time the difficulty in running such experiments under t
somewhat ideal conditions appropriate to the kinematic
proach as formulated in Ref.@27#, we do not aim this time a
either a direct comparison or a fitting of our results w
those of the experiments. Rather, we prefer to consider
kinematic equations, appropriate to the spiral motion
weakly excitable systems, as objects of analytic and num
research by themselves, and undertake a study of thei
sponse to spatiotemporal external noise. This notwithsta
ing, and as could be expected from what was reported in
@26#, the most distinctive features of randomly forced spira
i.e., the resonantlike behavior for pure temporal noise
the enhancement of spiral Brownian motion under spatiot
poral disorder, are consistently reproduced by the stocha
version of the kinematic model, and both effects are ind
largely amenable to a theoretical description as explai
here.

The organization of the paper is as follows. In Sec. II
reproduce, for the sake of self-completeness of the paper
basic set of kinematic equations as they are formulated
Ref. @27#. Sections III and IV are devoted to specifying th
numerical procedures and noise prescriptions used thro
out the paper. In particular, this is necessary to adapt
spatially discretized noise parametrization used in the
merical work to the continuous one appropriate to the a
lytical description. Section V is fully dedicated to the situ
tion of spatially uniform fluctuations~pure temporal noise!.
The analytical treatment to calculate a diffusion coefficien
sketched there, together with the results of some nume
04620
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simulations of the stochastic kinematic equations. For
sake of clarity, the material is divided into different sectio
organized with increasing analytical complexity depend
on the assumed level of random parametric forcing. Sec
VI contains analogous results for spatiotemporal fluctuatio
There we first present separately, in two sections, the c
of random effects, introduced through the normal and t
gential velocities of the spiral wave at its tip, reserving t
last section for the treatment of the fully stochastic eq
tions. Finally, Sec. VII is devoted to summarizing our resu
and drawing some conclusions.

II. KINEMATIC MODEL FOR TWO-DIMENSIONAL
SPIRAL WAVES

Within this approach, we start by invoking the so-call
quasistatic approximation, which allows us to reduce furt
the dynamics of a spiral wave to the motion of its tip@27#. In
a Cartesian coordinate frame such equations are written

dX

dt
52V sina2G cosa, ~1!

dY

dt
5V cosa2G sina, ~2!

whereX andY are the tip coordinates,a its angular variable,
andV andG denote, respectively, the normal and tangen
~respective to the spiral curve! tip velocities. These two
quantities depend on curvature effects, parametrized by
instantaneous spiral curvature at the tip denotedk, and are,
respectively, expressed as

V5V02Dk, ~3!

G5g~kc2k!, ~4!

in terms of the set of basic kinematic parametersV0 , kc , D,
and g. Under the limit of weak excitability, implicitly as-
sumed on all of what follows, the curvature correction to t
normal velocity will be assumed negligible (Dk!V0), so
that V reduces toV0, the excitability dependent paramet
denoting the intrinsic propagation velocity of uncurve
waves.

The particular solution corresponding to a rigid rotati
spiral can be simply recovered by takingG50, i.e., kc5k,
and puttinga5v0t, in terms of the pair of related and in
trinsic kinematic parameterskc , the critical curvature, and
v0, the natural frequency of the rotating spiral@27#,

v05z~DV0!1/2kc
3/2, ~5!

with z being a numeric constant:z50.685.
In general, to obtain solutions for quasirigid rotating sp

rals, we need to supplement Eqs.~1!–~2! with appropriate
equations fora and k, both being assumed to be time
dependent quantities. These equations read

dk

dt
52

1

tg
~k2kc!, ~6!
5-2
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NOISE-INDUCED BROWNIAN MOTION OF SPIRAL WAVES PHYSICAL REVIEW E63 046205
da

dt
5v1Gk. ~7!

Apart from the characteristic rotation period, Eq.~6! in-
troduces throughtg a second time scale into the problem
corresponding to the relaxation of the instantaneous tip
vature to its critical value. The parametertg will play an
important role in what follows and can be expressed in te
of v0 as

tg5
D

gv0
. ~8!

In the context of the phenomenological kinematic theo
D and g are not restricted by any inner condition, so th
they are normally assumed to be of the same order@27#. This
means that the two time scales appearing so far in the th
are comparable. Finallyv can be formally expressed i
terms ofk by generalizing Eq.~5! above to

v5z~DV0!1/2k3/2. ~9!

The set of kinematic equations~1!–~9! is now complete
and ready to be formally examined when the intrinsic kin
matic parameters are subjected to spatiotemporal fluc
tions. In principle, and lacking a more fundamental und
standing of the way such parameters really depend on
excitability of the system, one could assume that any
them, i.e.,V0 , kc , and the pair of curvature related coef
cientsD andg, could be sensitive to noise effects. Howev
the system of kinematic equations is so complicated that s
plifications are necessary to render our analysis clear eno
to detect neat and systematic effects. In this sense and b
on our simulation results, we tend to think thatV0 andkc are
by far the most natural candidates to incorporate parame
noise. In addition, it will be clear in what follows that th
role of structured noise superimposed on these two par
eters are notoriously distinct and we are confident that t
capture the most representative effects of external fluc
tions interacting with the spiral wave dynamics. So we g
erally consider situations with

V05V̄01jV0
, ~10!

kc5 k̄c1jkc
, ~11!

wherejV0
andjkc

denote zero-mean, Gaussian, spatiotem
ral noises whose statistics are further described in the foll
ing sections.

III. NUMERICAL PROCEDURES

The numerical simulations have been run with an expl
Euler method for the integration of the equations for the
coordinates. The time integration step has been chose
Dt51 t.u., whereas the period of the deterministic spi
was, for most of the cases,T05290 t.u.~temporal and spatia
units depend on the excitable system where the theor
applied!. The total time of simulation has always been se
04620
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eral orders of magnitude larger than the rotation period, ty
cally at least 500T0.

Spatiotemporal noise is distributed in square cells or p
els of linear dimensionl in a completely uncorrelated wa
and satisfying individually the Ornstein-Uhlenbeck statist
@28#

^jP,i j ~ t !jQ,kl~ t8!&5sPQ
2 e2ut2t8u/td ikd j l ,

$P,Q%5$V0 ,kc%. ~12!

In what follows we report on numerical experiments
spiral wave dispersion organized in series correspondin
fixed values ofl. This quantity, i.e., the noise correlatio
length, was prescribed always larger than the spiral corl
.2R0 ; l 5100 s.u. or 200 s.u. for a typical value ofR0
546 s.u.). In each series we varied the correlation timet,
keeping the noise dispersionsPQ

2 constant. For the sake o
comparison, numerical simulations were also performed w
pure temporal~spatially uniform! noise corresponding to th
limit of infinite l.

The total size of the grid has been chosen one orde
magnitude bigger than the spiral core: from 1000 s.u. to 6
s.u., depending on the dispersion of the spiral. Typically,
number of realizations needed to evaluate the diffusion
efficient range from 300 for uniform fluctuations to 200 f
the spatiotemporal noise.

IV. NOISE SPECIFICATIONS

In the preceding section we have already described
merically the way random fluctuations are introduced in
the kinematic scheme. However some further specificati
are necessary.

To put our analysis here in the perspective of the exp
mental work on the BZ illuminated medium, and befo
starting our simulations with spiral dispersion, we det
mined numerically the dependence of the two basic ki
matic parametersV0 and kc on the illumination parameter
The summarized results of such numerical work, based
the two-variable version of the Oregonator model adapted
a light-sensitive BZ medium, convinced us that fluctuatio
in V0 and kc are correlated, the simplest choice being
assume them to be linearly correlated and of similar rela
magnitudes@see Fig. 2#.

Using the notation introduced previously in Eq.~12!, this
means that the three corresponding noise dispersions,
notedsV0 ,V0

2 , sV0 ,kc

2 , andskc ,kc

2 will actually be assumed to

be proportional. To simplify the notation we hereafter den

sV0 ,V0

2 simply by sV0

2 and correspondinglysV0 ,kc

2 [nsV0

2

and skc ,kc

2 [n2sV0

2 , in terms of anad hoc proportionality

constant denotedn, to be fixed later on.
The second specification refers to the analytical res

that are going to be presented in the next sections. As
become clear in what follows, most of these results do ad
elegant formal generalizations beyond the Ornste
Uhlenbeck-like temporal correlation prescribed in all our n
merical work according to Eq.~12!. This means that analyti
5-3
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S. ALONSO AND F. SAGUE´S PHYSICAL REVIEW E63 046205
cal results are going to be obtained as much as possible
stationary noises, with generic time correlation denoted
^j(t)j(t8)&}Cj(ut2t8u) ~spatial dependence is not kept
this expression to simplify notation and because it is
going to be explicitly necessary in what follows!. Obviously,
when we compare analytical expressions with numerical
sults, we will adapt our formal scheme to the Ornste
Uhlenbeck prescription by replacingCj(ut2t8u) by
s2e2ut2t8u/t.

The final necessary specification refers to the way
discrete spatial nature of the noise in the numerical sim
tions Eq. ~12! is translated into our space-continuous ph
nomenological equations. Actually, we had several opti
that should be conveniently discussed. In any case, the
essary condition to be fulfilled is the statistical independe
of the temporal and spatial correlation components

^j~r ,t !j~r 8,t8!&5Cj~ ut2t8u!C~r2r 8!. ~13!

The obvious choice is to prescribe a triangularlike fo
for the spatial part, i.e.,

C~r2r 8!5S 12
ux2x8u

l D S 12
uy2y8u

l D . ~14!

This correlation function is anisotropic and the calcu
tions with it become very complicated. Other simpler choic
that we expect to give qualitatively similar but simpler r
sults arise from the following argument. Since diffusion is
process that is related to long times and large distances
behavior of the system should be independent of the lo
topology of the system while keeping the characteristic c

FIG. 2. Results for kinematic parametersV0 and kc obtained
from numerical simulations of the two-variable reaction-diffusi
photosensitive Oregonator model@26# with numerical values of
f 51.4, q50.002,e50.01, Du51, andDv50.6 ~a! Linear behav-
ior is observed for the normal velocityV0 of the spiral versus the
illumination parameterf. ~b! Critical curvaturekc of the spiral
waves versus illumination parameterf, where the critical curvature
has been calculated with the kinematic expressionkc

5(V0 /z2DR0
2)1/3 @27#.
04620
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relation length. So we can enforce the isotropic characte
the correlation function with different forms like the on
adopted here,

C~ ur2r 8u!5S 12
ur2r 8u2

l 2 D , ~15!

which renders the analytical treatment easier. Very sim
results~not shown! were also obtained with other isotrop
functions assuming either exponential or Gaussian dep
dences.

To completely adapt our spatiotemporal random forc
to the kinematic approach, note that, within the spirit
its quasistatic version as it is going to be used here,
spatial structure of the noise will enter only through the s
cessive positions visited by the wandering tip. An exa
analytic approach following from such an ansatz is out of o
reach, given the complexity of the set of stochastic kinema
equations. So we introduce hereafter a ‘‘quasideterminist
approximation by defining effective spatial dependent noi
asj„R(t),t… whereR(t) stands for the tip deterministic tra
jectory, chosen in our case to be represented at its lea
order by a circular motion with frequencyv0, corre-
sponding to the unperturbed steadily rotating spiral@R(t)
5R0(cosv0t,sinv0t), R(t8)5R0(cosv0t8,sinv0t8)#. Given
our success in exploiting the analytic possibilities it offe
this ansatz turns out to be highly rewarding, although o
can easily anticipate that such an approximation will bre
down for spatiotemporal disorder of large correlation tim
as will be discussed later on.

V. SPATIALLY UNIFORM FLUCTUATIONS

Before addressing the general case of spatiotemporal
order, we are going to consider fluctuations modeled as p
temporal ~spatially uniform! noise. Different ways to pro-
ceed can be examined separately depending on the ch
parametric forcing.

A. Fluctuations in the normal velocity for a steady „vÄv0…

rigid rotating spiral „kÄkc…

In the first calculation, rather artificial but useful in illus
trating the most important steps of our analytic procedu
we have worked with a system wherev5v0 andk5kc are
assumed to be constant parameters, while fluctuations
introduced only throughV0 at the tip equations. This situa
tion could be understood, in fact, as a circular motion of
tip around a core with a fluctuating radius. The set of kin
matic equations appropriate to this case reduces to

dX0

dt
52V0~ t !sinv0t52@V01jV0

~ t !#sinv0t, ~16!

dY0

dt
5V0~ t !cosv0t5@V01jV0

~ t !#cosv0t. ~17!

Representative trajectories following from these equati
are shown in Fig. 3.
5-4
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NOISE-INDUCED BROWNIAN MOTION OF SPIRAL WAVES PHYSICAL REVIEW E63 046205
The explicit calculation of a diffusion coefficient accoun
ing for the tip wandering is then exact and particula
straightforward. We start by defining the complex quant
for the tip positionZ5X1 iY. Then we can rewrite Eqs
~16!–~17! as,

FIG. 3. Numerical simulations of trajectories corresponding
the spiral tip randomly forced according to Eqs.~16!–~17!, with
different correlation times~t510 t.u.,t550 t.u.,t5500 t.u.!. For
simplicity the displacements depicted in this and related follow
figures actually refer to the center of the spiral core. The sp
parameters areV051, kc50.1, D51, g51.5, R0546.16 s.u.,T0

5290 t.u., andtg530.80 t.u. Simulations are run for a total time
3000T0. The fluctuations inV0 are introduced withsV0

2 50.0025.
04620
dZ

dt
5@V01jV0

~ t !# ieiv0t, ~18!

whose formal resolution leads to

Z5
V0

v0
eiv0t1 i E

0

t

jV0
~ t8!eiv0t8dt8. ~19!

A linear time dependence of the squared dispersion of
spiral tip is a signature of Brownian motion,^Z2&52dDt,
characterized by a diffusion coefficient defined as

2dD5 K duZu2

dt L
t→`

52 ReS K dZ

dt
Z* L D

t→`

, ~20!

with d52 for our two-dimensional simulations. So, th
problem of the calculation of the diffusion coefficient r
duces to the calculation of the average^dZ/dtZ* &

ReS K dZ

dt
Z* L D5E

0

t

^jV0
~ t !jV0

~ t8!&cosv0~ t2t8!dt8.

~21!

Invoking the stationary character of the fluctuations,

K duZu2

dt L
t→`

5PjV0

cos~v0!, ~22!

wherePj
cos(v0) stands for the power spectrum of the noise

the characteristic frequency of the rotating spiral

Pj
cos~V![E

2`

`

Cj~ t !eiVtdt52E
0

`

Cj~ t !cosVt dt.

~23!

The final expression for the diffusion coefficient then sim
ply reads

D5
1

4
PjV0

cos~v0!. ~24!

If we choose as a particular noise the Ornstein-Uhlenb
forcing, this general expression reduces to

D5
sV0

2

2

t

11v0
2t2

. ~25!

The simulation results in Fig. 4 perfectly agree with t
theoretical calculation. Up to this point the treatment is e
act, so numerical results in this section are also useful a
benchmark calculation to check our simulations routines.

What is important in Fig. 4 is the resonant effect of t
diffusion coefficient when the time scale of the noise, para
etrized by its correlation time, matches the characteri
time scale of the spiral rotation parametrized by the inve
of its rotation frequencytmax5v0

215T0/2p. Remarkably
enough, this important feature of the temporal fluctuatio
which was neatly observed in the corresponding BZ exp

g
l

5-5
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ments as recalled in the Introduction, appear to be so ro
that it is already captured at the simple level of descript
proposed so far.

B. Fluctuations on the normal and tangential velocities for a
steady„vÄv0… nonrigid rotating spiral „kÄ” kc…

To the preceding situation, we now add fluctuations int
duced through the parameterkc , keepingv and this time
and alsotg constant. The set of kinematic equations are
pressed now as

dX0

dt
52V0~ t !sinv0t1g@k~ t !2kc~ t !#cosv0t, ~26!

dY0

dt
5V0~ t !cosv0t1g@k~ t !2kc~ t !#sinv0t, ~27!

dk

dt
52

1

tg
@k~ t !2kc~ t !#. ~28!

A formal resolution of Eq.~28! is first needed to define
the formal noise acting on the tip’s curvaturek, denoted
c(t), which can then be introduced into Eqs.~26!–~27!,
leading similarly as before to

dZ

dt
5@V01jV0

~ t !# ieiv0t1c~ t !eiv0t. ~29!

In analogy with Eq.~23!, we define this time the comple
mentary quantityPC

sin(V), as

Pj
sin~V![2E

0

`

Cj~ t !sinVt dt, ~30!

FIG. 4. Numerical results for the effective diffusion coefficie
D vs t, following from Eqs.~16!–~17! for the tip motion with an
average of 300 realizations for each correlation time. The sp
parameters are those of Fig. 3 withsV0

2 50.0025 andv050.0216.
Simulations are run for a total time of 104T0. The continuous curve
fit corresponds to the analytical result given by Eq.~25! with
sV0 num

2 50.0026 andv0num50.0218.
04620
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to arrive to a final result analogous to Eq.~24! above

D5
1

4
@PjV0

cos~v0!1Pc
cos~v0!1PcjV0

sin ~v0!#. ~31!

For the particular case of the Ornstein-Uhlenbeck sta
tics, the left averages can be explicitly calculated and
together into a general expression for the diffusion coe
cient. The result is totally similar to the previous Eq.~25!,
but now written in terms of a mixed noise intensity,

D5
sV0kc ,m

2

2

t

11v0
2t 2

, ~32!

where the exact result forsV0kc ,m
2 reads

sV0kc ,m
2 5sV0

2 S 11g2n2
v0

2tg
2

11v0
2tg

2
12gn

v0tg

11v0
2tg

2D .

~33!

Numerical results for the diffusion coefficient followin
from simulations of Eqs.~26!–~28! are shown in Fig. 5,
which again show perfect agreement between analytical
numerical results.

One particular simplification of this result corresponds
retaining fluctuations onkc only (V05constant). In this case
there are no fluctuations inV0 and the final result reduce
simply to

D5
sV0

2 g2n2

2

v0
2tg

2

11v0
2tg

2

t

11v0
2t2

, ~34!

al

FIG. 5. Numerical results for the effective diffusion coefficie
D vs t following from Eqs.~26!–~28! for the tip motion with an
average of 300 realizations for each correlation time. The sp
parameters are those of Fig. 3 withsV0

2 50.0025 andv050.0216,

andn50.1 andsV0kc ,m
2 50.0286 as calculated from Eq.~33!. Simu-

lations are run for a total time of 104T0. The continuous curve fit
corresponds to the analytical result given by Eq.~32! with
sV0kc ,m,num

2 50.0290 andv0num50.0216.
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once again with the samet dependence but with anothe
prefactor.

C. Fully stochastic equations„v,tg nonconstant andkÄ” kc…

The next natural step in our analysis consists in includ
fluctuations in the kinematic equations but now not on
explicitly in the tip equations but wherever the paramet
V0 andkc appear, i.e., also in the implicit expressions forv
andtg .

No analytic calculations are available for this situatio
because of the great complexity of the analyses involv
However, for Ornstein-Uhlenbeck noise and according to
previous cases, we expect the same formal result to h
expressing this time in terms of an effective noise intens
seff

2 }sV0

2 ,

D5
seff

2

2

t

11v0
2t2

. ~35!

To confirm this conjecture we have conducted simulatio
for different noise realizations and several correlation tim
The corresponding results forD are shown in Fig. 6, fully
confirming our ansatz.

All the results in this section can be summarized by s
ing that a neat resonantlike dependence ofD with t ex-
pressed by the maximum att5v0

21 is obtained in full agree-
ment with experimental results. The physical interpretat
of this behavior is as follows. At fixed noise dispersions2,
the effect of random perturbations must disappear for v
ishingt since fast bounded fluctuations will be averaged
by the system. On the other hand forv0t@1, the spiral cores
lose mobility because the noise does not change apprec

FIG. 6. Numerical results for the effective diffusion coefficie
D vs t following from the full stochastic equations for the tip mo
tion with an average of 300 realizations for each correlation tim
The spiral parameters are those of Fig. 3 withsV0

2 50.0025, v0

50.0216, andn50.1. Simulations are run for a total time of 104T0.
The continuous curve fit corresponds to the effective result given
Eq. ~35! with seffnum

2 50.00143 andv0num50.0215.
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during a rotation period of the tip. The effect of tempor
spatially uniform noise is thus most effective when no
variations match the intrinsic time scale of the rotating spir

VI. SPATIOTEMPORAL FLUCTUATIONS

Now according to what was anticipated in Sec. IV, t
fluctuating parameters are going to depend on the tip posi
and timeV05V0(X,Y,t) and kc5kc(X,Y,t). The quaside-
terministic circular trajectory is parametrized as

Z~ t !5
V0

v0
eiv0t ~36!

so that

uR~ t !2R~ t8!u252
V0

2

v0
2 @12cosv0~ t2t8!#. ~37!

As we have anticipated, we are going to use such
quasideterministic trajectory to approximate the spatial c
relation function, which according to Eq.~15! reads

C~ ur2r 8u!5S 122
V0

2

v0
2l 2

@12cosv0~ t2t8!# D . ~38!

Noise-distributed effects introduced thoughV0 or kc are
quite different from those of the case with spatially unifor
fluctuations, as will become clear in what follows. For th
reason we treat them separately in the next two sectio
Note in this respect that the level of approximation in S
VI B is different from that in Sec. V B, since here fluctua
tions will only appear onkc whereas there they entered in
both V0 andkc .

A. Fluctuations in the normal velocity for a steady „vÄv0…

rigid rotating spiral „kÄkc…

As we have done for the temporal case, we are going
begin with the simplest situation, i.e., a circular motion w
a fluctuating radius. Similarly to Eq.~18!,

dZ

dt
5@V01jV0

~Z,t !# ieiv0t. ~39!

To solve this stochastic differential equation, we proce
as we did in the temporal case@see Eq.~19!#, invoking
this time the conditions of Eq.~38! for the noise correla-
tion. Following the same formal steps as we did before,
arrive at

K duZu2

dt L
t→`

52E
0

`

dtCj~ t !cosv0t

3S 12
4V0

2

v0
2l 2

1

2
1

4V0
2

v0
2l 2

1

2
cosv0t D . ~40!

.

y
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The diffusion coefficient can thus be expressed as a fu
tion of the power spectrum of the noise at the characteri
frequency and multiples of this frequency

D5

PjV0

cos~v0!

4
1

V0
2

4v0
2l 2

@PjV0

cos~0!22PjV0

cos~v0!1PjV0

cos~2v0!#.

~41!

For the Ornstein-Uhlenbeck noise this formal express
turns into

D5
sV0

2

2

t

11v0
2t2

1
sV0

2

2

V0
2

v0
2l 2 S t2

2t

11v0
2t2

1
t

114v0
2t2D .

~42!

Note that this last expression, compared with the co
sponding result, Eq.~25!, for spatially uniform fluctuations
correctly predicts an enhancement of the spiral dispers
due to the spatiotemporal character of the random forc
However, the unbounded quasilinear growth ofD with t,
which appears in Eq.~42!, is an artifact of our quasideter
ministic approximation to the correlation function that w
be corrected later on. Before doing that, it is interesting
examine the dispersion trajectories following to the stoch
tic dynamics prescribed by Eq.~39!. As shown qualitatively
in Fig. 7, the core diffuses temporally until it finds a boun
ary between noise cells. Then, for large enought the tip does
one part of the rotation motion with one velocity and anoth
part with another velocity. If both velocities are differen
which is likely to occur since noise realizations are uncor
lated in each cell, the radius will be different too. The fin
result is that there is a net transversal velocity experience
the tip and a corresponding lateral drift of the spiral core
its attached motion to the boundaries of the noise cells. La

FIG. 7. Boundary effects on spiral motion corresponding to
normal velocity dependence on spatial fluctuations. For the sak
simplicity, the picture corresponds to the limit of frozen noise~in-
finite t). The tip motion is supposed to begin at the left on the pi
@ i , j # where it rigidly rotates with a characteristic radius. After ha
period it crosses to the next noise pixel@ i , j 21#, where the velocity
and in turn the rotation radius are different. After completing a
other half-period the tip has gained a net displacement
2@R0( i , j 21)2R0( i , j )# per rotating period. This effect would re
peat for the next period.
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scale numeric simulations shown in Fig. 8 reproduce t
motion mode, which indeed turns out to be a very effect
dispersion mechanism for spiral dispersion singularly
large values oft.

e
of

l

-
f

FIG. 8. Numeric simulations of trajectories corresponding to
spiral tip randomly forced according to Eq.~39!, with different
correlation times~t550 t.u.,t51000 t.u.,t510 000 t.u.! and a cor-
relation length ofl 5200 s.u. The spiral parameters are those of F
3. Simulations are run for a total time of 300T0. The fluctuations in
V0 are introduced withsV0

2 50.0225.
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Needless to say and in view of the tip trajectories we h
just described, it would have been rather surprising that
quasideterministic ansatz would have been able to reprod
the numeric results for correlation times larger than typica
the rotation period of the spiral. Actually, by proposing
ansatz based on a deterministic closed motion of the tip,
introduce spurious effects at larget, since the effective noise
realizations experienced by the tip appear strongly correla
after every rotation period. In fact, the actual trajectory is
closing in itself and decorrelates the effective noise by
ploring spatially uncorrelated regions.

The most reasonable way to overcome this limitation
by introducing a cutoff of the correlation times. Th
amounts to replacingt by t8, defined as

1

t8
[

1

t
1

1

teff
, ~43!

in terms of thead hocparameterteff , interpreted as the time
needed for the tip to cross over a pixel, and in what follo
considered as a fitting parameter. Proceeding in this w
analytical and numerical results are perfectly comparable
shown in Fig. 9.

B. Fluctuations in the tangential velocity for a steady
„vÄv0… nonrigid rotating spiral „kÄ” kc…

Numeric simulations corresponding to this situation a
shown in Fig. 10. They are indeed very different as co
pared to those presented in the last section as a clear m
festation of the singular effect of the spatiotemporal rand
forcing when allowed to act on the sprouting or contract
motion of the spiral. A close examination of the tip motio

FIG. 9. Numeric results for the effective diffusion coefficientD
vs t following from Eq.~39! for the tip motion, with an average o
200 realizations for each correlation time. The spiral parameters
those of Fig. 3, withsV0

2 50.0025 andl 5200 s.u. Simulations are
run for a total time of 1000T0. The continuous curve fit correspond
to Eq. ~42! corrected with an effective correlation time@see Eq.
~43!# with sV0

2 50.0025, and fitting parametersV0
2/v0

2l 250.11 and
teff54000 t.u. Dashed line, shown for comparison, correspond
the case of spatially uniform fluctuations.
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FIG. 10. Numerical simulations of trajectories corresponding
fluctuations on the tangential velocity of the tip, with different co
relation times~t520 t.u.,t52000 t.u.,t5200 000 t.u.! and a correla-
tion length of l 540 s.u. The spiral parameters have been chan
to increasetg to better see the pinning effect~see text!: V051,
kc50.2, D51, g50.4, R0516.32 s.u., T05102 t.u., and tg

540.8 t.u. Simulations are run for a total time of 15 000T0. The
fluctuations inkc are introduced withsV0

2 50.25 andn50.1.
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reveals that it quasisteadily rotates inside a cell unti
boundary is found when the tip chooses either to remain
the same pixel, after which the boundary sends the core b
or to leave it very quickly. The tip decides its behavior d
pending on the relation between the pair of values ofkc in
the two adjacent pixels.

This behavior can be easily interpreted since when cro
ing a boundary the value ofkc changes instantaneously, b
the change ink is not completely adiabatic, as dictated b
the characteristic relaxation timetg ~provided this time con-
stant is large enough!. Thus we do have a non-null and st
chastically varying tangential velocity for the tip given b
G5g(kc2k). Then if kc.k (kc,k), there is a positive
~negative! tangential velocity, and the tip returns to~goes
straight to! the previous~next! pixel @see Fig. 11#.

As a matter of fact, this behavior closely resembles a s
of pinned motion, according to which the tip remains co
fined within a cell for long-time intervals, interrupted b
very fast episodes when crossing the pixel boundaries. A

FIG. 11. Boundary effects for the curvature dependence
the fluctuations forcing the spiral motion. The tip is shown to
tate rigidly @k5kc( i , j )# on the pixel@ i , j # with no tangential veloc-
ity. When it crosses the boundary, the value forkc is updated to
kc( i 21,j ) but the instantaneous tip curvature must evolve fr
the previous valuekc( i , j ). A tangential velocity appears righ
after crossing,G5g@kc( i 21,j )2kc( i , j )#, which is positive~nega-
tive! if kc( i 21,j ).(,)kc( i , j ) as we can see on the first~second!
picture.
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ally, this pinning effect enables us to easily interpret t
characteristic behavior of the diffusion coefficient for lon
correlation times (D}1/t) @see Fig. 12#. A simple argument
goes as follows. For larget the dispersion motion inside
pixel, as represented by Eq.~34!, corresponds to a time lag
for fixed l, proportional tot @ l 2.2t/(11v0

2t2)t#. Faster
transitions between pixels, when they correspond, tak
very short time. So essentially the tip dispersion increases
fixed amounts of orderl 2 in time steps proportional tot.

As we can see in Fig. 12 such a pinned motion drastica
reduces the spiral dispersion for larget, the effect being
more pronounced for larger pixel size. Obviously, tip a
choring is longer lasting for larger pixels where the tip c
rotate without the presence of the pixel boundaries. Wh
the pixel size is smaller the tip is forced to move across
pixel boundaries more often leading to some enhanced
persion. We finally emphasize that since the curvature re
ation time is set by the parametertg , the pinning effect is
more effective as this value increases. Furthermore by c
paring globally the results in Fig. 12 with those in Fig. 9 w
see that the values of the diffusion coefficient under s
tiotemporal and spatially uniform fluctuations inkc are simi-
lar, whereas in Fig. 9, when considering fluctuations inV0,
the diffusion coefficient under spatiotemporal fluctuations
typically one order of magnitude larger than for spatia
uniform noise.

C. Fully stochastic equations„v,tg nonconstant andkÄ” kc…

In this last section we are going to consider the m
general scenario retaining spatiotemporal fluctuations in b
V05V0(X,Y,t) andkc5kc(X,Y,t). It is quite reasonable to
expect mixed trends of spiral dispersion combining the t
distinctive modes just mentioned. This is indeed t

n
-

FIG. 12. Numerical results for the effective diffusion coefficie
D vs t, following from fluctuations through the tangential velocit
The spiral parameters are those of Fig. 10 withsV0

2 50.25, n50.1,
and l 540 s.u. ~squares!, with an average of 200 realizations fo
each correlation time, andl 560 s.u.~diamonds!, with an average of
50 realizations. Simulations are run for a total time of 20 000T0.
Dashed line, shown for comparison, corresponds to the case of
tially uniform fluctuations.
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FIG. 13. Numerical simulations of trajectories correspond
to the full stochastic scheme, with different correlation times~t
5100 t.u.,t51000 t.u.,t530 000 t.u.! and a correlation length ofl
5200 s.u. The spiral parameters are those of Fig. 3. Simulations
run for a total time of 1000T0. The fluctuations inV0 and kc are
introduced withsV0

2 50.0225 andn50.1.
04620
case as depicted by the set of representative trajecto
shown in Fig. 13. If we accept, as proposed here follow
the results quoted in Sec. IV, that the relative values of
fluctuations in both parameters are of the same order,
can easily conclude that the dominance of each mode
essentially depend on the value of the correlation time re
tive to the time scale of the curvature relaxation. In the lim
of very small values oft, the spatiotemporal structure of th
noise is going to be irrelevant, given the pointlike, i.e
purely tip based, description of the spiral motion at the orig
of the quasistatic version of the kinematic approach e
ployed here. For larger values oft, but still smaller thantg ,
the effects of random forcing on the normal velocity a
dominant and the dispersion of the spiral is very effective
dictated by the erratic motion of the tip attached to the pi
boundaries. Finally, when increasingt and exceedingtg we
expect a crossover to a pinnedlike much less effective do
nated dispersion. These qualitative predictions fully expl
the numerical results summarized in Fig. 14.

VII. CONCLUSIONS

We have systematically examined, analytically and
means of numerical simulations, the behavior of spiral ex
tation waves forced with spatiotemporal random forcing. O
initial motivation was the related experiments we had co
ducted with the light-sensitive version of the BZ reactio
The formalism presented here can actually be extende
spiral waves in any excitable system@3–5# under the limit of
weak excitability. In any case, the necessary ingredient i
know the relations, such as those in Fig. 2, between the
nematic parameters and the externally controlled excitabi
This is so because our approach is based totally on the us
the quasistatic version of the phenomenological kinem

re

FIG. 14. Numerical results for the effective diffusion coefficie
D vs t following from the full stochastic equations for the tip mo
tion with an average of 200 realizations for each correlation tim
The spiral parameters are those of Fig. 3 withsV0

2 50.0225 and
l 5100 s.u. Simulations are run for a total time of 1000T0. Dashed
line, shown for comparison, corresponds to the case of spat
uniform fluctuations.
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theory, which reduces the whole spiral dynamics to the m
tion of a pointlike object representing its tip.

The statistics considered refers to Ornstein-Uhlenb
forces, although the analytic approach has been genera
as much as possible, especially in the particular and sim
situation of uniform fluctuations~pure temporal forcing!. In
this case, a neat resonantlike dependence of the diffu
coefficient on the correlation time for fixed noise intens
has been evidenced.

Under the more general scenario corresponding to s
tiotemporal disorder, a pair of distinctive dispersion mod
have been identified. A very efficient one, represented by
erratic motion attached to the pixel boundaries, results fr
the fluctuations introduced into the normal velocity of t
spiral tip. When the correlation time is increased, a crosso
takes place from this behavior to a much less favorably
persed, pinnedlike motion as follows from the effect of flu
tuations on the tangential velocity of the spiral tip.
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Following this paper one could imagine either experime
tal, numerical, or analytical extensions of the problem
hand, aimed particularly at examining the behavior of exc
able systems, or spiral supporting related ones, under
tiotemporal random forcing patterns other than those p
scribed here.
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